Blue light laser assisted crown lengthening in restorative dentistry

By Dr. Philipp Skora, Dr. Dominik Kraus, PD Dr. Jörg Meister & Prof. Matthias Frentzen, Germany

Abstract
Basic investigations of the laser-tissue interaction of a new type of laser device with a wavelength of 445 nm—the blue light spectrum—promise considerable advantages in comparison with infrared laser systems due to the known optical parameters of oral soft tissue. The procedure for a comprehensive laser-based gingivectomy before restorative treatment using this new type of laser is presented in the following case report. Due to the outstanding haemostasis with the blue light laser, both gingivectomy and adhesive filling treatment were possible in only one session. The follow-up examination showed the rapid healing of the wound with no complications and with no post-operative gingival recession. The treatment led to a very good aesthetic result at a moderate effort.

Introduction
Blue light emitting diode lasers present an innovative alternative to the already established diode laser systems with wavelengths within the infrared spectrum. Due to the strong absorption of blue laser light in oral soft tissue, the cutting capacity is improved when comparable laser parameters are used. Blue light lasers have very powerful coagulation effects that enable blood free work. In addition, due to these specific characteristics, blue light lasers are extremely suitable for corrective periodontal surgery in terms of gingivectomies. In contrast to electrosurgery, laser assisted plastic-aesthetic periodontal surgical procedures do not cause problems of electro magnetic interactions that could in turn present a contra-indication in the case of patients with symptoms of cardiac disease. In the case of multi-morbid patients who are frequently prescribed anti-coagulants, the danger of secondary haemorrhage can be minimised. In addition, in these cases, a bloodless surgical field can be created ad hoc, so that moisture-sensitive restorative measures (adhesive dentistry) can be carried out. In general, for multi-morbid patients, it is important that restorative procedures can be carried out in a short time and that the use of anaesthetics should be reduced to a minimum. Excision wounds should heal in a short time period.

In case of extended subgingival loss of dental hard tissue, e.g. as a result of carious defects, it is always necessary to enable a visual inspection of the preparation margin before the restoration can be placed. Furthermore, a bloodless, clean, and dry adhesive surface must be guaranteed before application of...
A 72 year old patient visited the Dental School of the University of Bonn to obtain a dental consultation regarding prosthodontic aspects. The medical history was unremarkable. The patient did not suffer pain.

Case report
A 72 year old patient visited the Dental School of the University of Bonn to obtain a dental consultation regarding prosthodontic aspects. The medical history was unremarkable. The patient did not suffer pain.

Among other things, insufficient composite restoration in the anterior tooth area.

Figures 1a–e: X-rays of the upper jaw.—Subgingival carious lesions at 11 and 21.

This case study presents a treatment protocol for restorative and endodontic treatment of patients with extensive subgingival carious lesions in the anterior tooth area.

The defects were treated with adhesive restorations with a composite material in a multi-layer technique (Herculite®, A3.5). Figure 4 shows the situation after the restorations had been completed, including finishing and polishing of the aesthetically complex restoration. After laser treatment, haemostatic measures were no longer necessary for all subsequent treatment steps. In the post operative recall after seven days (Fig. 5), the patient reported that there was no postoperative pain. After the procedure, the patient did not find it necessary to use the anesthetics that had been made available.

After 14 days (Fig. 6), the excision wounds had healed to a very extent. There was still slight redness in the marginal area. No swelling occurred in the entire postoperative phase. At this time, endodontic treatment was also performed for the devitalised tooth 11. After preparation and sealing of the root canal, the preparation cavity was closed using a composite material (Figs. 7a–c). Three months after the operative procedure, the endodontic treatment of tooth 11 resulted in no further clinical symptoms. In the treated area, the probing depth was 1.5 mm. No bleeding was found during probing. No further recession of the gingival margin was found after the primary healing, approximately two weeks after treatment or at the follow-up inspection after three months.

Discussion
The presented treatment protocol for laser-assisted gingivectomy enabled the badly destroyed teeth 11 and 21 to be restored in an aesthetically satisfactory manner.

Due to the safe procedure and the drying of the surgical field after laser assisted excision, adhesive fillings were placed in the same session and exhibited no discoloration in the marginal zone, even after three months. This indicates a good bonding between the restorative material and the dentin. There was only little discomfort for the 72-year-old patient which derived from this complex therapy. After an emergency treatment, definitive rehabilitation, including adhesive restorations and endodontics, was carried out in two sessions.

The patient did not report any discomfort related to the laser treatment. The patient's aesthetic appearance in the anterior teeth of the upper jaw was restored with moderate means. This treatment procedure improves the patient's compliance, because it allows the patient to partake in a systematic care and treatment concept, which enables the continuation of additional necessary treatment measures.

Editorial note: A list of references is available from the publisher. This article was first published in laser magazine 4/2016.

Prof. Matthias Frentzen
Welchensstrasse 27
53111 Bonn, Germany
Tel.: +49 228 287-22470
frentzen@uni-bonn.de

Fig. 1a–e: X-rays of the upper jaw.—Subgingival carious lesions at 11 and 21.

The treatment plan was explained to the patient. In the first session, tooth 11 was trepanated as part of an emergency procedure. After exposure of the root canal, it was rinsed with sodium hypochlorite and calcium hydroxide solution. After this, the endodontic treatment of teeth 11 and 21 were excavated incompletely and treated temporarily with glass ionomer cement.

The patient came for further treatment five days later. The fistula on tooth 11 had closed, clinical symptoms were no longer present (Fig. 2). After an infiltration anaesthesia (1:8 ml UDS), the subgingival carious defects in teeth 11 and 21 were visualised in a gingivectomy (Fig. 3). For both teeth, approximately 4 mm of soft tissue had to be removed to expose the affected area. The gingivectomy was carried out using a 4 45 nm diode laser (Sirona K-Laser Blu, Sirona) with a power output of 1.5 W in cw mode and an application tip with a diameter of 320 μm. This device is a pre-set model equivalent to SIROLaser Blue (Sirona). The excision was carried out in six minutes.

The surgical procedure was performed with no pain.

After finishing the gingival excision, the surgical field was bloodless and dry (Fig. 5), so that the temporary fillings at 11 and 21 could be removed and the cavities completely excavated under visual control.

After the procedure, the patient did not find it necessary to use the anesthetics that had been made available.

After 14 days (Fig. 6), the excision wounds had healed to a very extent. There was still slight redness in the marginal area. No swelling occurred in the entire postoperative phase. At this time, endodontic treatment was also performed for the devitalised tooth 11. After preparation and sealing of the root canal, the preparation cavity was closed using a composite material (Figs. 7a–c). Three months after the operative procedure, the endodontic treatment of tooth 11 resulted in no further clinical symptoms. In the treated area, the probing depth was 1.5 mm. No bleeding was found during probing. No further recession of the gingival margin was found after the primary healing, approximately two weeks after treatment or at the follow-up inspection after three months. Gingival colour and surface texture (gingival steppings) corresponded to a healthy appearance (Fig. 8). To ensure long-term good oral hygiene and to prevent approximal gingival recession at 11/21 in a further step a frenectomy (laser-assisted) should be performed.

Discussion
The presented treatment protocol for laser-assisted gingivectomy enabled the badly destroyed teeth 11 and 21 to be restored in an aesthetically satisfactory manner.

Due to the safe procedure and the drying of the surgical field after laser assisted excision, adhesive fillings were placed in the same session and exhibited no discoloration in the marginal zone, even after three months. This indicates a good bonding between the restorative material and the dentin. There was only little discomfort for the 72-year-old patient which derived from this complex therapy. After an emergency treatment, definitive rehabilitation, including adhesive restorations and endodontics, was carried out in two sessions.

The patient did not report any discomfort related to the laser treatment. The patient's aesthetic appearance in the anterior teeth of the upper jaw was restored with moderate means. This treatment procedure improves the patient's compliance, because it allows the patient to partake in a systematic care and treatment concept, which enables the continuation of additional necessary treatment measures.

Editorial note: A list of references is available from the publisher. This article was first published in laser magazine 4/2016.

Prof. Matthias Frentzen
Welchensstrasse 27
53111 Bonn, Germany
Tel.: +49 228 287-22470
frentzen@uni-bonn.de
Root canal repair with the MTA sandwich technology

A clinical case that explains the technique step by step

By Dr. Riccardo Tonini, Italy

Root perforation repair has historically been a treatment with a low success rate; however, recent techniques and materials utilized in root perforation repair have dramatically improved the prognosis of both surgical and non-surgical procedures. Root perforation is defined as an artificial communication between the root canal system and the supporting tissues of teeth often caused by using rotary burs inside root canals.

In my practice, I have found lot of perforations caused by an inappropriate post space preparation for permanent restoration of endodontically treated teeth. They are located in the middle part of the canal and, according to my personal statistic, 80 per cent of the cases involve the first lower molar: considering this tooth, 60 per cent of perforations are in the mesial root and 40 per cent in the distal root and they are always generated by an over preparation of post space that has not taken into consideration the geometry of the cross-sectional anatomy of the lower first molar. Another consideration is that large sized perforations may not respond to repair as well as smaller ones.

Diagnosis

Bacterial infection emanating either from the root canal or the periodontal tissues, or both, prevents healing and brings about inflammatory sequel where exposure of the supporting tissues is inflicted. Thus, painful conditions, suppurations resulting in tender teeth, abscesses, and fistulae including bone resorptive processes may follow (1). A narrow isolated periodontal defect is a possible sign of root perforation. To determine locally isolated vertical bone losses, periodontal probing should be carried out by walking the probe around the tooth while pressing gently on the floor of the sulcus (2).

Fig. 1: In the first lower molar an X-ray can often show a bone loss between roots and diagnosis is easier than other teeth.

Fig. 2: As accurate detection of root perforations and determination of location are crucial to the treatment outcome, a paper is enough. The appearance of blood in the middle part of it is the perfect sign for a right diagnosis, detection and location of a perforation.

Fig. 3: The second step is represented by a conventional RCT, but obturation is done with last part of a gutta percha cone, starting with warm gutta percha condensation deeper than the perforation level avoiding any contamination of perforation area with sealer and GP. A plugger is used for GP condensation.

Fig. 4: During the third step MTA is positioned with MAP system. The system consists of a stainless steel or NiTi applicator with a bayonet catch for several exchangeable applicator cannulas (needles). Inside the cannula there is a plunger made in polymer that is longer than cannula providing a complete extrusion of internal material. The MTA can be taken from a dispenser thrusting the tip into the repair material and placed inside the canal in a sharp way pressing syringe piston to expel the material. An Endo Micro Brush can be used to gently pack the MTA or a plastic carrier can be used for a stronger condensation. MTA must be placed to all the extension of perforation.

Fig. 5: The last step is represented by backfilling the coronal part with GP or composite material in a second visit.
Now, everyone in your dental team can SHOOT!

Ultra-Light
SIMPLE Compact
Accurate
Intuitive

SHOFU Smart Digital EyeSpecial C-II

- The only one true dental camera
- 8 automated pre-set dental modes
- Intuitive one-touch operation with built-in anti-shake
- Large LCD touchscreen with on-screen guide
- Fast auto-focusing capability and excellent depth of field
- Water and chemical resistance
- Registration and imprinting of patient ID
- Uncomplicated photo management system

For more information, simply contact us or your nearest SHOFU dealer.